Free-space optical communication

Free-space optical communication (FSO) is an optical communication technology that uses light propagating in free space to transmit data for telecommunications or computer networking. "Free space" means air, outer space, vacuum, or something similar. This contrasts with using solids such as optical fiber cable or an optical transmission line. The technology is useful where the physical connections are impractical due to high costs or other considerations.

Contents

History

Optical communications, in various forms, have been used for thousands of years. The Ancient Greeks polished their shields to send signals during battle. In the modern era, semaphores and wireless solar telegraphs called heliographs were developed, using coded signals to communicate with their recipients.

In 1880 Alexander Graham Bell and his assistant Charles Sumner Tainter created the Photophone, at Bell's newly established Volta Laboratory in Washington, DC. Bell considered it his most important invention. The device allowed for the transmission of sound on a beam of light. On June 3, 1880, Bell conducted the world's first wireless telephone transmission between two buildings, some 213 meters apart.[1][2] Its first practical use came in military communication systems many decades later.

Carl Zeiss Jena developed the Lichtsprechgerät 80 (direct translation: light speaking device) that the German army used in their World War II anti-aircraft defense units.[3]

The invention of lasers in the 1960s revolutionized free space optics. Military organizations were particularly interested and boosted their development. However the technology lost market momentum when the installation of optical fiber networks for civilian uses was at its peak.

Many simple and inexpensive consumer remote controls use low-speed commnication using infrared (IR) light. This known as consumer IR technologies.

Usage and technologies

Free-space point-to-point optical links can be implemented using infrared laser light, although low-data-rate communication over short distances is possible using LEDs. Infrared Data Association (IrDA) technology is a very simple form of free-space optical communications. Free Space Optics are additionally used for communications between spacecraft. Maximum range for terrestrial links is in the order of 2 to 3 km (1.2 to 1.9 mi),[4] but the stability and quality of the link is highly dependent on atmospheric factors such as rain, fog, dust and heat. Amateur radio operators have achieved significantly farther distances using incoherent sources of light from high-intensity LEDs. One reported 173 miles (278 km) in 2007.[5] However, physical limitations of the equipment used limited bandwidths to about 4 kHz. The high sensitivities required of the detector to cover such distances made the internal capacitance of the photodiode used a dominant factor in the high-impedance amplifier which followed it, thus naturally forming a low-pass filter with a cut-off frequency in the 4 kHz range.

In outer space, the communication range of free-space optical communication is currently in the order of several thousand kilometers,[6] but has the potential to bridge interplanetary distances of millions of kilometers, using optical telescopes as beam expanders.[7] The distance records for optical communications involved detection and emission of laser light by space probes. A two-way distance record for communication was set by the Mercury laser altimeter instrument aboard the MESSENGER spacecraft. This infrared diode neodymium laser, designed as a laser altimeter for a Mercury orbit mission, was able to communicate across a distance of 15 million miles (24 million km), as the craft neared Earth on a fly-by in May, 2005. The previous record had been set with a one-way detection of laser light from Earth, by the Galileo probe, as two ground-based lasers were seen from 6 million km by the out-bound probe, in 1992.[8]

Secure free-space optical communications have been proposed using a laser N-slit interferometer where the laser signal takes the form of an interferometric pattern. Any attempt to intercept the signal causes the collapse of the interferometric pattern.[9] [10] This technique has been demonstrated to work over propagation distances of practical interest[11] and, in principle, it could be applied over large distances in space.[9]

Visible light communication

Researchers used a white LED-based space lighting system for indoor local area network (LAN) communications. These systems present advantages over traditional UHF RF-based systems from improved isolation between systems, the size and cost of receivers/transmitters, RF licensing laws and by combining space lighting and communication into the same system.[12] In 2003, a Visible Light Communication Consortium was formed in Japan.[13] A low-cost white LED (GaN-phospor) which could be used for space lighting can typically be modulated up to 20 MHz.[14] Data rates of over 100 Mbit/s can be easily achieved using efficient modulation schemes and Siemens claimed to have achieved over 500 Mbit/s in 2010.[15] Research published in 2009 used a similar system for traffic control of automated vehicles with LED traffic lights.[16] In January 2009 a task force for visible light communication was formed by the Institute of Electrical and Electronics Engineers working group for wireless personal area network standards known as IEEE 802.15.[17] A trial was announced in 2010 in St. Cloud, Minnesota.[18]

Applications

Typically scenarios for use are:

The light beam can be very narrow, which makes FSO hard to intercept, improving security. In any case, it is comparatively easy to encrypt any data traveling across the FSO connection for additional security. FSO provides vastly improved electromagnetic interference (EMI) behavior compared to using microwaves.

Advantages

Disadvantages

For terrestrial applications, the principal limiting factors are:

These factors cause an attenuated receiver signal and lead to higher bit error ratio (BER). To overcome these issues, vendors found some solutions, like multi-beam or multi-path architectures, which use more than one sender and more than one receiver. Some state-of-the-art devices also have larger fade margin (extra power, reserved for rain, smog, fog). To keep an eye-safe environment, good FSO systems have a limited laser power density and support laser classes 1 or 1M. Atmospheric and fog attenuation, which are exponential in nature, limit practical range of FSO devices to several kilometres.

See also

References

  1. ^ Mary Kay Carson (2007). Alexander Graham Bell: Giving Voice To The World. Sterling Biographies. New York: Sterling Publishing. pp. 76–78. ISBN 978-1-4027-3230-0. http://books.google.com/books?id=a46ivzJ1yboC. 
  2. ^ Alexander Graham Bell (October 1880). "On the Production and Reproduction of Sound by Light". American Journal of Science, Third Series XX (118): 305–324.  also published as "Selenium and the Photophone" in Nature, September 1880.
  3. ^ "German, WWII, WW2, Lichtsprechgerät 80/80". LAUD Electronic Design AS. http://www.laud.no/ww2/lispr/lispr2.htm. Retrieved June 28, 2011. 
  4. ^ Tom Garlington, Joel Babbitt and George Long (March 2005). "Analysis of Free Space Optics as a Transmission Technology". WP No. AMSEL-IE-TS-05001. U.S. Army Information Systems Engineering Command. p. 3. Archived from the original on June 13, 2007. http://web.archive.org/web/20070613000248/http://www.hqisec.army.mil/isec/publications/Analysis_of_Free_Space_Optics_as_a_Transmission_Technology_Mar05.pdf. Retrieved June 28, 2011. 
  5. ^ Clint Turner (October 3, 2007). "A 173-mile 2-way all-electronic optical contact". Modulated light web site. http://www.modulatedlight.org/optical_comms/optical_qso_173mile.html. Retrieved June 28, 2011. 
  6. ^ "Another world first for Artemis: a laser link with an aircraft". European Space Agency. December 18, 2006. http://www.esa.int/esaTE/SEMN6HQJNVE_index_0.html. Retrieved June 28, 2011. 
  7. ^ Steen Eiler Jørgensen (October 27, 2003). "Optisk kommunikation i deep space– Et feasibilitystudie i forbindelse med Bering-missionen". Dansk Rumforskningsinstitut. http://silicium.dk/pdf/speciale.pdf. Retrieved June 28, 2011.  (Danish) Optical Communications in Deep Space, University of Copenhagen
  8. ^ "Space probe breaks laser record: A spacecraft has sent a laser signal to Earth from 24 million km (15 million miles) away in interplanetary space". BBC News. January 6, 2006. http://news.bbc.co.uk/2/hi/science/nature/4587580.stm. Retrieved June 28, 2011. 
  9. ^ a b F. J. Duarte (May 2002). "Secure interferometric communications in free space". Optics Communications 205 (4): 313–319. doi:10.1016/S0030-4018(02)01384-6. 
  10. ^ F. J. Duarte (January 2005). "Secure interferometric communications in free space: enhanced sensitivity for propagation in the metre range". Journal of Optics A: Pure and Applied Optics 7 (1). doi:10.1088/1464-4258/7/1/011. 
  11. ^ F. J. Duarte, T. S. Taylor, A. M. Black, W. E. Davenport, and P. G. Varmette, N-slit interferometer for secure free-space optical communications: 527 m intra interferometric path length , J. Opt. 13, 035710 (2011).
  12. ^ Tanaka, Y.; Haruyama, S.; Nakagawa, M.; , "Wireless optical transmissions with white colored LED for wireless home links," Personal, Indoor and Mobile Radio Communications, 2000. PIMRC 2000. The 11th IEEE International Symposium on , vol.2, no., pp.1325-1329 vol.2, 2000
  13. ^ "Visible Light Communication Consortium". web site. Archived from the original on April 6, 2004. http://web.archive.org/web/20040406083532/http://www.vlcc.net/.  (Japanese)
  14. ^ J. Grubor; S. Randel; K.-D. Langer; J. W. Walewski (December 15, 2008). "Broadband Information Broadcasting Using LED-Based Interior Lighting". Journal of Lightwave Technology 26 (24): 3883–3892. doi:10.1109/JLT.2008.928525. 
  15. ^ "500 Megabits/Second with White LED Light". news release (Siemens). January 18, 2010. http://www.siemens.com/innovation/en/news_events/ct_pressreleases/e_research_news/2010/e_22_resnews_1002_1.htm. Retrieved June 28, 2011. 
  16. ^ Lee, I.E.; Sim, M.L.; Kung, F.W.L.; , "Performance enhancement of outdoor visible-light communication system using selective combining receiver," Optoelectronics, IET , vol.3, no.1, pp.30-39, February 2009
  17. ^ "IEEE 802.15 WPAN Task Group 7 (TG7) Visible Light Communication". IEEE 802 local and metro area network standards committee. 2009. http://www.ieee802.org/15/pub/TG7.html. Retrieved June 28, 2011. 
  18. ^ Kari Petrie (November 19, 2010). "City first to sign on to new technology". St. Cloud Times: p. 1. http://pqasb.pqarchiver.com/sctimes/access/2192375711.html?FMT=ABS&date=Nov+19%2C+2010. 
  19. ^ Jing Xue, Alok Garg, Berkehan Ciftcioglu, Jianyun Hu, Shang Wang, Ioannis Savidis, Manish Jain, Rebecca Berman, Peng Liu, Michael Huang, Hui Wu, Eby G. Friedman, Gary W. Wicks, Duncan Moore (June 2010). "An Intra-Chip Free-Space Optical Interconnect". the 37th International Symposium on Computer Architecture. http://www.ece.rochester.edu/users/mihuang/PAPERS/isca10.pdf. Retrieved June 30, 2011. 

Further reading

External links